La Fotosíntesis es un proceso en virtud del cual los organismos con clorofila, como las plantas verdes, las algas y algunas bacterias, capturan energía en forma de luz y la transforman en energía química.
Prácticamente toda la energía que consume la vida de la biosfera terrestre —la zona del planeta en la cual hay vida— procede de la fotosíntesis.
La fotosíntesis se realiza en dos etapas: una serie de reacciones que dependen de la luz y son independientes de la temperatura, y otra serie que dependen de la temperatura y son independientes de la luz.
La velocidad de la primera etapa, llamada reacción lumínica, aumenta con la intensidad luminosa (dentro de ciertos límites), pero no con la temperatura. En la segunda etapa, llamada reacción en la oscuridad, la velocidad aumenta con la temperatura (dentro de ciertos límites), pero no con la intensidad luminosa.
Fase primaria o lumínica
La fase lumínica de la fotosíntesis es una etapa en la que se producen reacciones químicas con la ayuda de la luz solar y la clorofila.
La clorofila es un compuesto orgánico, formado por moléculas que contienen átomos de carbono, de hidrógeno, oxígeno, nitrógeno y magnesio.
Estos elementos se organizan en una estructura especial: el átomo de magnesio se sitúa en el centro rodeado de todos los demás átomos.
Molécula de clorofila
La clorofila capta la luz solar, y provoca el rompimiento de la molécula de agua (H2O), separando el hidrógeno (H) del oxígeno (O); es decir, el enlace químico que mantiene unidos al hidrógeno y al oxígeno de la molécula de agua, se rompe por efecto de la luz.
El proceso genera oxígeno gaseoso que se libera al ambiente, y la energía no utilizada es almacenada en moléculas especiales llamadas ATP. En consecuencia, cada vez que la luz esté presente, se desencadenará en la planta el proceso descrito.
Fase secundaria u oscura
La fase oscura de la fotosíntesis es una etapa en la que no se necesita la luz, aunque se realiza en su presencia. Ocurre en los cloroplastos y depende directamente de los productos obtenidos en la fase lumínica.
En esta fase, el hidrógeno formado en la fase anterior se suma al dióxido de carbono gaseoso (CO2) presente en el aire, dando como resultado la producción de compuestos orgánicos, principalmente carbohidratos; es decir, compuestos cuyas moléculas contienen carbono, hidrógeno y oxígeno.
Dicho proceso se desencadena gracias a una energía almacenada en moléculas de ATP que da como resultado el carbohidrato llamado glucosa (C6HI2O6), un tipo de compuesto similar al azúcar.
Después de la formación de glucosa, ocurre una secuencia de otras reacciones químicas que dan lugar a la formación de almidón y varios carbohidratos más.
A partir de estos productos, la planta elabora lípidos y proteínas necesarios para la formación del tejido vegetal, lo que produce el crecimiento.
Cada uno de estos procesos no requiere de la participación de luz ni de la clorofila, y por ende se realiza durante el día y la noche. Por ejemplo, el almidón producido se mezcla con el agua presente en las hojas y es absorbido por unos tubitos minúsculos que existen en el tallo de la planta y, a través de éstos, es transportado hasta la raíz donde se almacena. Este almidón es utilizado para fabricar celulosa, el principal constituyente de la madera.
El resultado final, y el más trascendental, es que la planta guarda en su interior la energía que proviene del Sol. Esta condición es la razón de la existencia del mundo vegetal porque constituye la base energética de los demás seres vivientes.
Por una parte, las plantas son para los animales fuente de alimentación, y, por otra, mantienen constante la cantidad necesaria de oxígeno en la atmósfera permitiendo que los seres vivos puedan obtener así la energía necesaria sus actividades.
Si los químicos lograran reproducir la fotosíntesis por medios artificiales, se abriría la posibilidad de capturar energía solar a gran escala. En la actualidad se trabaja mucho en este tipo de investigación. Todavía no se ha logrado sintetizar una molécula artificial que se mantenga polarizada durante un tiempo suficiente para reaccionar de forma útil con otras moléculas, pero las perspectivas son prometedoras.
Importancia biológica de la fotosíntesis
La fotosíntesis es seguramente el proceso bioquímico más importante de la Biosfera por varios motivos:
1. La síntesis de materia orgánica a partir de la inorgánica se realiza fundamentalmente mediante la fotosíntesis; luego irá pasando de unos seres vivos a otros mediante las cadenas tróficas, para ser transformada en materia propia por los diferentes seres vivos.
2. Produce la transformación de la energía luminosa en energía química, necesaria y utilizada por los seres vivos
3. En la fotosíntesis se libera oxígeno, que será utilizado en la respiración aerobia como oxidante.
4. La fotosíntesis fue causante del cambio producido en la atmósfera primitiva, que era anaerobia y reductora.
5. De la fotosíntesis depende también la energía almacenada en combustibles fósiles como carbón, petróleo y gas natural.
6. El equilibrio necesario entre seres autótrofos y heterótrofos no sería posible sin la fotosíntesis.
Se puede concluir que la diversidad de la vida existente en la Tierra depende principalmente de la fotosíntesis.
jueves, 11 de noviembre de 2010
jueves, 27 de mayo de 2010
la celula
Los seres vivos están formados por mínimas unidades llamadas células. Todas las funciones químicas y fisiológicas básicas, por ejemplo, la reparación, el crecimiento, el movimiento, la inmunidad, la comunicación, y la digestión, ocurren al interior de la célula.
Los hombres de ciencia, solo pudieron realizar investigaciones en relación a ellas después del descubrimiento del microscopio. (Ver Teoría celular)
Clasificación de los seres vivos
Según el número de células que los forman, los seres vivos se pueden clasificar en unicelulares y pluricelulares.
Unicelulares: Son todos aquellos organismos formados por una sola célula. En este grupo, los más representativos son los protozoos -ameba, paramecio, euglena-, que sólo pueden observarse con un microscopio.
Pluricelulares: Son todos aquellos organismos formados por más de una célula. Existe gran variedad de ellos, tales como los vertebrados (aves, mamíferos, anfibios, peces, reptiles) y los invertebrados (arácnidos, insectos, moluscos, etc.).
En los vegetales, podemos tomar como ejemplos a las plantas con flores (angiosperma), sin flores típicas (gimnospermas), musgos, hongos, etcétera.
Modelo de célula
Los organismos pluricelulares presentan una determinada organización de sus células, en distintos niveles, que son:
Célula: mínima unidad que forma parte de un ser vivo.
Tejido: conjunto de células que tienen características y funciones similares y con un mismo origen.
Órgano: conjunto de tejidos unidos y coordinados para cumplir una función específica. Por ejemplo: pulmón, corazón, estómago, etcétera. En el caso de los vegetales, son considerados órganos: la raíz, las semillas, las hojas, las flor, etcétera.
Sistemas: resultado de la unión de varios órganos, los cuales funcionan de una forma coordinada para desempeñar un rol determinado. Por ejemplo: se habla de Sistema Digestivo, Renal, Circulatorio, Nervioso, Reproductor, etcétera.
Organismo: es un ser vivo formado por un conjunto de sistemas, que trabajan armónicamente.
Existen seres vivos que no tienen órganos o sistemas estructurados, pero poseen una organización sencilla, esto les permite un buen desarrollo. Si un órgano se daña o altera provoca una desorganización del ser vivo.
Las tres partes básicas de toda célula son: la membrana plasmática, el citoplasma, y el núcleo.
Membrana Celular o plasmática
La membrana celular o plasmática
La membrana celular se caracteriza porque:
Rodea a toda la célula y mantiene su integridad.
Está compuesta por dos sustancias orgánicas: proteínas y lípidos, específicamente fosfolípidos.
Los fosfolípidos están dispuestos formando una doble capa (bicapa lipídica), donde se encuentran sumergidas las proteínas.
Es una estructura dinámica.
Es una membrana semipermeable o selectiva, esto indica que sólo pasan algunas sustancias (moléculas) a través de ella.
Tiene la capacidad de modificarse y en este proceso forma poros y canales
Funciones de la membrana celular
Regula el paso de sustancias hacia el interior de la célula y viceversa. Esto quiere decir que incorpora nutrientes al interior de la célula y permite el paso de desechos hacia el exterior.
Como estructura dinámica, permite el paso de ciertas sustancias e impide el paso de otras.
Aísla y protege a la célula del ambiente externo
Ver: PSU: Biología, Pregunta 03_2005
El citoplasma
Se caracteriza porque:
Es una estructura celular que se ubica entre la membrana celular y el núcleo.
Contiene un conjunto de estructuras muy pequeñas, llamadas organelos celulares.
Está constituido por una sustancia semilíquida.
Químicamente, está formado por agua, y en él se encuentran en suspensión, o disueltas, distintas sustancias como proteínas, enzimas, líquidos, hidratos de carbono, sales minerales, etcétera.
Funciones del citoplasma
Nutritiva. Al citoplasma se incorporan una serie de sustancias, que van a ser transformadas o desintegradas para liberar energía.
De almacenamiento. En el citoplasma se almacenan ciertas sustancias de reserva.
Estructural. El citoplasma es el soporte que da forma a la célula y es la base de sus movimientos.
Los organelos celulares
Son pequeñas estructuras intracelulares, delimitadas por una o dos membranas. Cada una de ellas realiza una determinada función, permitiendo la vida de la célula. Por la función que cumple cada organelo, la gran mayoría se encuentra en todas las células, a excepción de algunos, que solo están presentes en ciertas células de determinados organismos.
Mitocondria
Mitocondrias: en los organismos heterótrofos, las mitocondrias son fundamentales para la obtención de la energía.
Son organelos de forma elíptica, están delimitados por dos membranas, una externa y lisa, y otra interna, que presenta pliegues, capaces de aumentar la superficie en el interior de la mitocondria. Poseen su propio material genético llamado DNA mitocondrial.
La función de la mitocondria es producir la mayor cantidad de energía útil para el trabajo que debe realizar la célula. Con ese fin, utiliza la energía contenida en ciertas moléculas. Por ejemplo, tenemos el caso de la glucosa.
Esta molécula se transforma primero en el citoplasma y posteriormente en el interior de la mitocondria, hasta CO2 (anhídrido carbónico), H2O (agua) y energía. Esta energía no es ocupada directamente, sino que se almacena en una molécula especial llamada ATP (adenosin trifosfato).
El ATP se difunde hacia el citoplasma para ser ocupado en las distintas reacciones en las cuales se requiere de energía. Al liberar la energía, el ATP queda como ADP (adenosin difosfato), el cual vuelve a la mitocondria para transformarse nuevamente en ATP
Los hombres de ciencia, solo pudieron realizar investigaciones en relación a ellas después del descubrimiento del microscopio. (Ver Teoría celular)
Clasificación de los seres vivos
Según el número de células que los forman, los seres vivos se pueden clasificar en unicelulares y pluricelulares.
Unicelulares: Son todos aquellos organismos formados por una sola célula. En este grupo, los más representativos son los protozoos -ameba, paramecio, euglena-, que sólo pueden observarse con un microscopio.
Pluricelulares: Son todos aquellos organismos formados por más de una célula. Existe gran variedad de ellos, tales como los vertebrados (aves, mamíferos, anfibios, peces, reptiles) y los invertebrados (arácnidos, insectos, moluscos, etc.).
En los vegetales, podemos tomar como ejemplos a las plantas con flores (angiosperma), sin flores típicas (gimnospermas), musgos, hongos, etcétera.
Modelo de célula
Los organismos pluricelulares presentan una determinada organización de sus células, en distintos niveles, que son:
Célula: mínima unidad que forma parte de un ser vivo.
Tejido: conjunto de células que tienen características y funciones similares y con un mismo origen.
Órgano: conjunto de tejidos unidos y coordinados para cumplir una función específica. Por ejemplo: pulmón, corazón, estómago, etcétera. En el caso de los vegetales, son considerados órganos: la raíz, las semillas, las hojas, las flor, etcétera.
Sistemas: resultado de la unión de varios órganos, los cuales funcionan de una forma coordinada para desempeñar un rol determinado. Por ejemplo: se habla de Sistema Digestivo, Renal, Circulatorio, Nervioso, Reproductor, etcétera.
Organismo: es un ser vivo formado por un conjunto de sistemas, que trabajan armónicamente.
Existen seres vivos que no tienen órganos o sistemas estructurados, pero poseen una organización sencilla, esto les permite un buen desarrollo. Si un órgano se daña o altera provoca una desorganización del ser vivo.
Las tres partes básicas de toda célula son: la membrana plasmática, el citoplasma, y el núcleo.
Membrana Celular o plasmática
La membrana celular o plasmática
La membrana celular se caracteriza porque:
Rodea a toda la célula y mantiene su integridad.
Está compuesta por dos sustancias orgánicas: proteínas y lípidos, específicamente fosfolípidos.
Los fosfolípidos están dispuestos formando una doble capa (bicapa lipídica), donde se encuentran sumergidas las proteínas.
Es una estructura dinámica.
Es una membrana semipermeable o selectiva, esto indica que sólo pasan algunas sustancias (moléculas) a través de ella.
Tiene la capacidad de modificarse y en este proceso forma poros y canales
Funciones de la membrana celular
Regula el paso de sustancias hacia el interior de la célula y viceversa. Esto quiere decir que incorpora nutrientes al interior de la célula y permite el paso de desechos hacia el exterior.
Como estructura dinámica, permite el paso de ciertas sustancias e impide el paso de otras.
Aísla y protege a la célula del ambiente externo
Ver: PSU: Biología, Pregunta 03_2005
El citoplasma
Se caracteriza porque:
Es una estructura celular que se ubica entre la membrana celular y el núcleo.
Contiene un conjunto de estructuras muy pequeñas, llamadas organelos celulares.
Está constituido por una sustancia semilíquida.
Químicamente, está formado por agua, y en él se encuentran en suspensión, o disueltas, distintas sustancias como proteínas, enzimas, líquidos, hidratos de carbono, sales minerales, etcétera.
Funciones del citoplasma
Nutritiva. Al citoplasma se incorporan una serie de sustancias, que van a ser transformadas o desintegradas para liberar energía.
De almacenamiento. En el citoplasma se almacenan ciertas sustancias de reserva.
Estructural. El citoplasma es el soporte que da forma a la célula y es la base de sus movimientos.
Los organelos celulares
Son pequeñas estructuras intracelulares, delimitadas por una o dos membranas. Cada una de ellas realiza una determinada función, permitiendo la vida de la célula. Por la función que cumple cada organelo, la gran mayoría se encuentra en todas las células, a excepción de algunos, que solo están presentes en ciertas células de determinados organismos.
Mitocondria
Mitocondrias: en los organismos heterótrofos, las mitocondrias son fundamentales para la obtención de la energía.
Son organelos de forma elíptica, están delimitados por dos membranas, una externa y lisa, y otra interna, que presenta pliegues, capaces de aumentar la superficie en el interior de la mitocondria. Poseen su propio material genético llamado DNA mitocondrial.
La función de la mitocondria es producir la mayor cantidad de energía útil para el trabajo que debe realizar la célula. Con ese fin, utiliza la energía contenida en ciertas moléculas. Por ejemplo, tenemos el caso de la glucosa.
Esta molécula se transforma primero en el citoplasma y posteriormente en el interior de la mitocondria, hasta CO2 (anhídrido carbónico), H2O (agua) y energía. Esta energía no es ocupada directamente, sino que se almacena en una molécula especial llamada ATP (adenosin trifosfato).
El ATP se difunde hacia el citoplasma para ser ocupado en las distintas reacciones en las cuales se requiere de energía. Al liberar la energía, el ATP queda como ADP (adenosin difosfato), el cual vuelve a la mitocondria para transformarse nuevamente en ATP
Suscribirse a:
Entradas (Atom)